\(\int (a+b \cos (c+d x)) (A+C \cos ^2(c+d x)) \sec ^5(c+d x) \, dx\) [529]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [A] (verification not implemented)
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 31, antiderivative size = 117 \[ \int (a+b \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right ) \sec ^5(c+d x) \, dx=\frac {a (3 A+4 C) \text {arctanh}(\sin (c+d x))}{8 d}+\frac {b (2 A+3 C) \tan (c+d x)}{3 d}+\frac {a (3 A+4 C) \sec (c+d x) \tan (c+d x)}{8 d}+\frac {A b \sec ^2(c+d x) \tan (c+d x)}{3 d}+\frac {a A \sec ^3(c+d x) \tan (c+d x)}{4 d} \]

[Out]

1/8*a*(3*A+4*C)*arctanh(sin(d*x+c))/d+1/3*b*(2*A+3*C)*tan(d*x+c)/d+1/8*a*(3*A+4*C)*sec(d*x+c)*tan(d*x+c)/d+1/3
*A*b*sec(d*x+c)^2*tan(d*x+c)/d+1/4*a*A*sec(d*x+c)^3*tan(d*x+c)/d

Rubi [A] (verified)

Time = 0.21 (sec) , antiderivative size = 117, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.226, Rules used = {3111, 3100, 2827, 3853, 3855, 3852, 8} \[ \int (a+b \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right ) \sec ^5(c+d x) \, dx=\frac {a (3 A+4 C) \text {arctanh}(\sin (c+d x))}{8 d}+\frac {a (3 A+4 C) \tan (c+d x) \sec (c+d x)}{8 d}+\frac {a A \tan (c+d x) \sec ^3(c+d x)}{4 d}+\frac {b (2 A+3 C) \tan (c+d x)}{3 d}+\frac {A b \tan (c+d x) \sec ^2(c+d x)}{3 d} \]

[In]

Int[(a + b*Cos[c + d*x])*(A + C*Cos[c + d*x]^2)*Sec[c + d*x]^5,x]

[Out]

(a*(3*A + 4*C)*ArcTanh[Sin[c + d*x]])/(8*d) + (b*(2*A + 3*C)*Tan[c + d*x])/(3*d) + (a*(3*A + 4*C)*Sec[c + d*x]
*Tan[c + d*x])/(8*d) + (A*b*Sec[c + d*x]^2*Tan[c + d*x])/(3*d) + (a*A*Sec[c + d*x]^3*Tan[c + d*x])/(4*d)

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3100

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f
_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m
+ 1)*(a^2 - b^2))), x] + Dist[1/(b*(m + 1)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(a*A - b*B +
a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b,
e, f, A, B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]

Rule 3111

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])*((A_.) + (C_.)*sin[(e
_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(b*c - a*d))*(A*b^2 + a^2*C)*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m +
 1)/(b^2*f*(m + 1)*(a^2 - b^2))), x] + Dist[1/(b^2*(m + 1)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp
[b*(m + 1)*(a*C*(b*c - a*d) + A*b*(a*c - b*d)) - ((b*c - a*d)*(A*b^2*(m + 2) + C*(a^2 + b^2*(m + 1))))*Sin[e +
 f*x] + b*C*d*(m + 1)*(a^2 - b^2)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C}, x] && NeQ[b*c
- a*d, 0] && NeQ[a^2 - b^2, 0] && LtQ[m, -1]

Rule 3852

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Dist[-d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 3853

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Csc[c + d*x])^(n - 1)/(d*(n
- 1))), x] + Dist[b^2*((n - 2)/(n - 1)), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n,
 1] && IntegerQ[2*n]

Rule 3855

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps \begin{align*} \text {integral}& = \frac {a A \sec ^3(c+d x) \tan (c+d x)}{4 d}+\frac {1}{4} \int \left (4 A b+a (3 A+4 C) \cos (c+d x)+4 b C \cos ^2(c+d x)\right ) \sec ^4(c+d x) \, dx \\ & = \frac {A b \sec ^2(c+d x) \tan (c+d x)}{3 d}+\frac {a A \sec ^3(c+d x) \tan (c+d x)}{4 d}+\frac {1}{12} \int (3 a (3 A+4 C)+4 b (2 A+3 C) \cos (c+d x)) \sec ^3(c+d x) \, dx \\ & = \frac {A b \sec ^2(c+d x) \tan (c+d x)}{3 d}+\frac {a A \sec ^3(c+d x) \tan (c+d x)}{4 d}+\frac {1}{3} (b (2 A+3 C)) \int \sec ^2(c+d x) \, dx+\frac {1}{4} (a (3 A+4 C)) \int \sec ^3(c+d x) \, dx \\ & = \frac {a (3 A+4 C) \sec (c+d x) \tan (c+d x)}{8 d}+\frac {A b \sec ^2(c+d x) \tan (c+d x)}{3 d}+\frac {a A \sec ^3(c+d x) \tan (c+d x)}{4 d}+\frac {1}{8} (a (3 A+4 C)) \int \sec (c+d x) \, dx-\frac {(b (2 A+3 C)) \text {Subst}(\int 1 \, dx,x,-\tan (c+d x))}{3 d} \\ & = \frac {a (3 A+4 C) \text {arctanh}(\sin (c+d x))}{8 d}+\frac {b (2 A+3 C) \tan (c+d x)}{3 d}+\frac {a (3 A+4 C) \sec (c+d x) \tan (c+d x)}{8 d}+\frac {A b \sec ^2(c+d x) \tan (c+d x)}{3 d}+\frac {a A \sec ^3(c+d x) \tan (c+d x)}{4 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.46 (sec) , antiderivative size = 80, normalized size of antiderivative = 0.68 \[ \int (a+b \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right ) \sec ^5(c+d x) \, dx=\frac {3 a (3 A+4 C) \text {arctanh}(\sin (c+d x))+\tan (c+d x) \left (3 a (3 A+4 C) \sec (c+d x)+6 a A \sec ^3(c+d x)+8 b \left (3 (A+C)+A \tan ^2(c+d x)\right )\right )}{24 d} \]

[In]

Integrate[(a + b*Cos[c + d*x])*(A + C*Cos[c + d*x]^2)*Sec[c + d*x]^5,x]

[Out]

(3*a*(3*A + 4*C)*ArcTanh[Sin[c + d*x]] + Tan[c + d*x]*(3*a*(3*A + 4*C)*Sec[c + d*x] + 6*a*A*Sec[c + d*x]^3 + 8
*b*(3*(A + C) + A*Tan[c + d*x]^2)))/(24*d)

Maple [A] (verified)

Time = 10.88 (sec) , antiderivative size = 118, normalized size of antiderivative = 1.01

method result size
derivativedivides \(\frac {a A \left (-\left (-\frac {\left (\sec ^{3}\left (d x +c \right )\right )}{4}-\frac {3 \sec \left (d x +c \right )}{8}\right ) \tan \left (d x +c \right )+\frac {3 \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )+a C \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )-A b \left (-\frac {2}{3}-\frac {\left (\sec ^{2}\left (d x +c \right )\right )}{3}\right ) \tan \left (d x +c \right )+C \tan \left (d x +c \right ) b}{d}\) \(118\)
default \(\frac {a A \left (-\left (-\frac {\left (\sec ^{3}\left (d x +c \right )\right )}{4}-\frac {3 \sec \left (d x +c \right )}{8}\right ) \tan \left (d x +c \right )+\frac {3 \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )+a C \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )-A b \left (-\frac {2}{3}-\frac {\left (\sec ^{2}\left (d x +c \right )\right )}{3}\right ) \tan \left (d x +c \right )+C \tan \left (d x +c \right ) b}{d}\) \(118\)
parts \(\frac {a A \left (-\left (-\frac {\left (\sec ^{3}\left (d x +c \right )\right )}{4}-\frac {3 \sec \left (d x +c \right )}{8}\right ) \tan \left (d x +c \right )+\frac {3 \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )}{d}-\frac {A b \left (-\frac {2}{3}-\frac {\left (\sec ^{2}\left (d x +c \right )\right )}{3}\right ) \tan \left (d x +c \right )}{d}+\frac {a C \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )}{d}+\frac {C b \tan \left (d x +c \right )}{d}\) \(126\)
parallelrisch \(\frac {-18 \left (\frac {3}{4}+\frac {\cos \left (4 d x +4 c \right )}{4}+\cos \left (2 d x +2 c \right )\right ) a \left (A +\frac {4 C}{3}\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )+18 \left (\frac {3}{4}+\frac {\cos \left (4 d x +4 c \right )}{4}+\cos \left (2 d x +2 c \right )\right ) a \left (A +\frac {4 C}{3}\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )+32 b \left (A +\frac {3 C}{4}\right ) \sin \left (2 d x +2 c \right )+9 a \left (A +\frac {4 C}{3}\right ) \sin \left (3 d x +3 c \right )+8 b \left (A +\frac {3 C}{2}\right ) \sin \left (4 d x +4 c \right )+33 a \sin \left (d x +c \right ) \left (A +\frac {4 C}{11}\right )}{12 d \left (\cos \left (4 d x +4 c \right )+4 \cos \left (2 d x +2 c \right )+3\right )}\) \(180\)
risch \(-\frac {i \left (9 A a \,{\mathrm e}^{7 i \left (d x +c \right )}+12 a C \,{\mathrm e}^{7 i \left (d x +c \right )}-24 C b \,{\mathrm e}^{6 i \left (d x +c \right )}+33 A a \,{\mathrm e}^{5 i \left (d x +c \right )}+12 C a \,{\mathrm e}^{5 i \left (d x +c \right )}-48 A b \,{\mathrm e}^{4 i \left (d x +c \right )}-72 C b \,{\mathrm e}^{4 i \left (d x +c \right )}-33 A a \,{\mathrm e}^{3 i \left (d x +c \right )}-12 a C \,{\mathrm e}^{3 i \left (d x +c \right )}-64 A b \,{\mathrm e}^{2 i \left (d x +c \right )}-72 C b \,{\mathrm e}^{2 i \left (d x +c \right )}-9 a A \,{\mathrm e}^{i \left (d x +c \right )}-12 a C \,{\mathrm e}^{i \left (d x +c \right )}-16 A b -24 C b \right )}{12 d \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )^{4}}+\frac {3 a A \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{8 d}+\frac {a \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) C}{2 d}-\frac {3 a A \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{8 d}-\frac {a \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) C}{2 d}\) \(279\)
norman \(\frac {\frac {a \left (7 A -4 C \right ) \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {\left (27 a A -16 A b +12 a C \right ) \left (\tan ^{11}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{6 d}+\frac {\left (27 a A +16 A b +12 a C \right ) \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{6 d}+\frac {\left (5 a A -8 A b +4 a C -8 C b \right ) \left (\tan ^{13}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{4 d}+\frac {\left (5 a A +8 A b +4 a C +8 C b \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{4 d}+\frac {\left (81 a A -8 A b -12 a C -72 C b \right ) \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{12 d}+\frac {\left (81 a A +8 A b -12 a C +72 C b \right ) \left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{12 d}}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{3} \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{4}}-\frac {a \left (3 A +4 C \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{8 d}+\frac {a \left (3 A +4 C \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{8 d}\) \(295\)

[In]

int((a+cos(d*x+c)*b)*(A+C*cos(d*x+c)^2)*sec(d*x+c)^5,x,method=_RETURNVERBOSE)

[Out]

1/d*(a*A*(-(-1/4*sec(d*x+c)^3-3/8*sec(d*x+c))*tan(d*x+c)+3/8*ln(sec(d*x+c)+tan(d*x+c)))+a*C*(1/2*sec(d*x+c)*ta
n(d*x+c)+1/2*ln(sec(d*x+c)+tan(d*x+c)))-A*b*(-2/3-1/3*sec(d*x+c)^2)*tan(d*x+c)+C*tan(d*x+c)*b)

Fricas [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 129, normalized size of antiderivative = 1.10 \[ \int (a+b \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right ) \sec ^5(c+d x) \, dx=\frac {3 \, {\left (3 \, A + 4 \, C\right )} a \cos \left (d x + c\right )^{4} \log \left (\sin \left (d x + c\right ) + 1\right ) - 3 \, {\left (3 \, A + 4 \, C\right )} a \cos \left (d x + c\right )^{4} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \, {\left (8 \, {\left (2 \, A + 3 \, C\right )} b \cos \left (d x + c\right )^{3} + 3 \, {\left (3 \, A + 4 \, C\right )} a \cos \left (d x + c\right )^{2} + 8 \, A b \cos \left (d x + c\right ) + 6 \, A a\right )} \sin \left (d x + c\right )}{48 \, d \cos \left (d x + c\right )^{4}} \]

[In]

integrate((a+b*cos(d*x+c))*(A+C*cos(d*x+c)^2)*sec(d*x+c)^5,x, algorithm="fricas")

[Out]

1/48*(3*(3*A + 4*C)*a*cos(d*x + c)^4*log(sin(d*x + c) + 1) - 3*(3*A + 4*C)*a*cos(d*x + c)^4*log(-sin(d*x + c)
+ 1) + 2*(8*(2*A + 3*C)*b*cos(d*x + c)^3 + 3*(3*A + 4*C)*a*cos(d*x + c)^2 + 8*A*b*cos(d*x + c) + 6*A*a)*sin(d*
x + c))/(d*cos(d*x + c)^4)

Sympy [F(-1)]

Timed out. \[ \int (a+b \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right ) \sec ^5(c+d x) \, dx=\text {Timed out} \]

[In]

integrate((a+b*cos(d*x+c))*(A+C*cos(d*x+c)**2)*sec(d*x+c)**5,x)

[Out]

Timed out

Maxima [A] (verification not implemented)

none

Time = 0.21 (sec) , antiderivative size = 152, normalized size of antiderivative = 1.30 \[ \int (a+b \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right ) \sec ^5(c+d x) \, dx=\frac {16 \, {\left (\tan \left (d x + c\right )^{3} + 3 \, \tan \left (d x + c\right )\right )} A b - 3 \, A a {\left (\frac {2 \, {\left (3 \, \sin \left (d x + c\right )^{3} - 5 \, \sin \left (d x + c\right )\right )}}{\sin \left (d x + c\right )^{4} - 2 \, \sin \left (d x + c\right )^{2} + 1} - 3 \, \log \left (\sin \left (d x + c\right ) + 1\right ) + 3 \, \log \left (\sin \left (d x + c\right ) - 1\right )\right )} - 12 \, C a {\left (\frac {2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 48 \, C b \tan \left (d x + c\right )}{48 \, d} \]

[In]

integrate((a+b*cos(d*x+c))*(A+C*cos(d*x+c)^2)*sec(d*x+c)^5,x, algorithm="maxima")

[Out]

1/48*(16*(tan(d*x + c)^3 + 3*tan(d*x + c))*A*b - 3*A*a*(2*(3*sin(d*x + c)^3 - 5*sin(d*x + c))/(sin(d*x + c)^4
- 2*sin(d*x + c)^2 + 1) - 3*log(sin(d*x + c) + 1) + 3*log(sin(d*x + c) - 1)) - 12*C*a*(2*sin(d*x + c)/(sin(d*x
 + c)^2 - 1) - log(sin(d*x + c) + 1) + log(sin(d*x + c) - 1)) + 48*C*b*tan(d*x + c))/d

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 304 vs. \(2 (107) = 214\).

Time = 0.32 (sec) , antiderivative size = 304, normalized size of antiderivative = 2.60 \[ \int (a+b \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right ) \sec ^5(c+d x) \, dx=\frac {3 \, {\left (3 \, A a + 4 \, C a\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right ) - 3 \, {\left (3 \, A a + 4 \, C a\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right ) + \frac {2 \, {\left (15 \, A a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} + 12 \, C a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} - 24 \, A b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} - 24 \, C b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} + 9 \, A a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 12 \, C a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 40 \, A b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 72 \, C b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 9 \, A a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 12 \, C a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 40 \, A b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 72 \, C b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 15 \, A a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 12 \, C a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 24 \, A b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 24 \, C b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{4}}}{24 \, d} \]

[In]

integrate((a+b*cos(d*x+c))*(A+C*cos(d*x+c)^2)*sec(d*x+c)^5,x, algorithm="giac")

[Out]

1/24*(3*(3*A*a + 4*C*a)*log(abs(tan(1/2*d*x + 1/2*c) + 1)) - 3*(3*A*a + 4*C*a)*log(abs(tan(1/2*d*x + 1/2*c) -
1)) + 2*(15*A*a*tan(1/2*d*x + 1/2*c)^7 + 12*C*a*tan(1/2*d*x + 1/2*c)^7 - 24*A*b*tan(1/2*d*x + 1/2*c)^7 - 24*C*
b*tan(1/2*d*x + 1/2*c)^7 + 9*A*a*tan(1/2*d*x + 1/2*c)^5 - 12*C*a*tan(1/2*d*x + 1/2*c)^5 + 40*A*b*tan(1/2*d*x +
 1/2*c)^5 + 72*C*b*tan(1/2*d*x + 1/2*c)^5 + 9*A*a*tan(1/2*d*x + 1/2*c)^3 - 12*C*a*tan(1/2*d*x + 1/2*c)^3 - 40*
A*b*tan(1/2*d*x + 1/2*c)^3 - 72*C*b*tan(1/2*d*x + 1/2*c)^3 + 15*A*a*tan(1/2*d*x + 1/2*c) + 12*C*a*tan(1/2*d*x
+ 1/2*c) + 24*A*b*tan(1/2*d*x + 1/2*c) + 24*C*b*tan(1/2*d*x + 1/2*c))/(tan(1/2*d*x + 1/2*c)^2 - 1)^4)/d

Mupad [B] (verification not implemented)

Time = 5.12 (sec) , antiderivative size = 195, normalized size of antiderivative = 1.67 \[ \int (a+b \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right ) \sec ^5(c+d x) \, dx=\frac {\left (\frac {5\,A\,a}{4}-2\,A\,b+C\,a-2\,C\,b\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7+\left (\frac {3\,A\,a}{4}+\frac {10\,A\,b}{3}-C\,a+6\,C\,b\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5+\left (\frac {3\,A\,a}{4}-\frac {10\,A\,b}{3}-C\,a-6\,C\,b\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3+\left (\frac {5\,A\,a}{4}+2\,A\,b+C\,a+2\,C\,b\right )\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{d\,\left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8-4\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6+6\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4-4\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+1\right )}+\frac {a\,\mathrm {atanh}\left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )\,\left (3\,A+4\,C\right )}{4\,d} \]

[In]

int(((A + C*cos(c + d*x)^2)*(a + b*cos(c + d*x)))/cos(c + d*x)^5,x)

[Out]

(tan(c/2 + (d*x)/2)*((5*A*a)/4 + 2*A*b + C*a + 2*C*b) + tan(c/2 + (d*x)/2)^7*((5*A*a)/4 - 2*A*b + C*a - 2*C*b)
 - tan(c/2 + (d*x)/2)^3*((10*A*b)/3 - (3*A*a)/4 + C*a + 6*C*b) + tan(c/2 + (d*x)/2)^5*((3*A*a)/4 + (10*A*b)/3
- C*a + 6*C*b))/(d*(6*tan(c/2 + (d*x)/2)^4 - 4*tan(c/2 + (d*x)/2)^2 - 4*tan(c/2 + (d*x)/2)^6 + tan(c/2 + (d*x)
/2)^8 + 1)) + (a*atanh(tan(c/2 + (d*x)/2))*(3*A + 4*C))/(4*d)